If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x-192=0
a = 3; b = -10; c = -192;
Δ = b2-4ac
Δ = -102-4·3·(-192)
Δ = 2404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2404}=\sqrt{4*601}=\sqrt{4}*\sqrt{601}=2\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{601}}{2*3}=\frac{10-2\sqrt{601}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{601}}{2*3}=\frac{10+2\sqrt{601}}{6} $
| p+ 1/2= 3 | | −3(x+7)+26=8-4x | | 31=x/2+17 | | 7d=-18 | | 12-4=14c-10 | | 12+11+3z+z-1+2z+3=67 | | 34+ y = 34 | | F(x)=4/3x+8 | | 1.5x=49.5 | | 1/2x-3=-1/3×+2 | | 4x+9+6x+7+3x+8=180 | | 32-3n=-2n-18 | | 3x+50=12x-40 | | 4(6^x)=88 | | x-0.80x=160 | | 8x-5=16x-15 | | 2^(x+1)=128 | | 7n+3(3-8n)=111 | | x-0.80x=x | | (x-4)7/5=x | | x2+8x-4224=0 | | -19x-13=-184 | | 3(2x)=10 | | x-47/5=x | | Y=5-3(x-1) | | 7x-1.8=-4x | | 7y-10y=5y | | 12n-347+4.8n=1000 | | 6n^2+4n-2=0 | | 4x+14=6x+22 | | 10(5d-3)=-10 | | 5x-7+4x=13 |